Smartphone-based User Location Tracking in Indoor Environment

Team Members: Viet-Cuong Ta^{1,2}, Dominique Vaufreydaz¹,

Trung-Kien Dao¹, Eric Castelli²

¹ Pervasive Interaction/LIG, CNRS, University of Grenoble-Alpes, Inria, France
 ² MICA Institute (HUST-CNRS/UMI2954-Grenoble INP), Hanoi University of Science and Technology, Vietnam

Overview

- The whole path is split into:
 - Find Building ID
 - Find Floor ID
 - Path Approximation
 - Smoothing
 - What next?

Figure 1: Subtasks and sensors are used

Building Identification

- Use GNSS is enough
 - If not, we can look into the BSSID of the WIFI

	UAH	CAR	UJITI	UJIUB
UAH	0.	24.9	285.0	284.6
CAR	24.9	0.	292.7	293.1
UJITI	285.0	292.7	0.	0.4
UJIUB	284.6	293.1	0.4	0.

 Table 1: Distance between buildings in km

Floor Identification

- Use WIFI data, by finger-printing approach.
 - Group "closed" WIFI data into one complete scan
 - Sparse data
 - Feature set:

4

- Raw feature: D = 353 in case of UAH building
- K-filter feature^[1] : used K = 2
- Hyperbolic Location Features (HLF)^[2]

[1] A. Moreira, M. J. Nicolau, F. Meneses, and A. Costa. Wi-fi fingerprinting in the real world – rtls@um at the evaal competition. In Indoor Positioning and Indoor Navigation (IPIN), 2015 International Conference on, pages 1–10, Oct 2015

[2] M.B. Kjaergaard and C.V. Munk. Hyperbolic location fingerprinting: A calibration-free solution for handling differences in signal strength (concise contribution). In Pervasive Computing and Communications, 2008. PerCom 2008. Sixth Annual IEEE International Conference on

Floor Identification

- Learning models: KNN, Random Forest (RF), Extreme Gradient Boosting (XGB)^[3]
- Results in cross-validation testing, with 5-fold:
- End up with two assumptions:
 - Floor is well-separated
 - Entrance/leaving points are at the stairs

	RAW	2-filters	HLF
KNN	91.47%	91.30%	91.47%
RF	95.52%	94.28%	92.70%
XGB	98.24%	97.80%	97.36%

 Table 2: Accuracy on floor identification sub-tasks (use classifiers only)

[3] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. CoRR, abs/1603.02754, 2016.

Path Approximation within a Floor: WIFI

Use WIFI fingerprinting approach:

6

- The same feature set and learning models as floor.
- Change the target: regression and classification.
- An average of error at 3rd-quarter is ground 6.5m with cross validation

Method	Raw	2-filters	HLF
KNN regression	9.7m	9.4m	9.1m
KNN classifier	10.3m	10.3m	10.3m
RF classifier	10.6m	11.5m	12.9m
XGB classifier	6.6m	6.0m	6.2m

 Table 3: 3rd-quarter error of several learning models

Path Approximation within a Floor: Speed

For speed:

7

- Moving and standing patterns are well separated.
- From the log file, calculate the average speed.
- Use simple rule:
 - If std \geq 1.0, use average speed
 - Otherwise, 0

Figure 2: Z-axis of accelerometers

Path Approximation within a Floor: Direction

- Direction is calculated in a numerous way:
 - By rotation matrix from ACCE and MAGN
 - By integrating of GYRO data
 - By Madgwick filter^[4]
 - By AHRS data
 - The path is constructed by using Particle Filter^[5]
 - Affect by errors drifting seriously

Figure 3: Four different methods for computing direction

[4] Sebastian Madgwick. An efficient orientation filter for inertial and inertial/magnetic sensor arrays.
Report x-io and University of Bristol (UK), 2010
[5] Nisarg Kothari, Balajee Kannan, Evan D Glasgwow, and M Bernardine Dias.
Robust indoor localization on a commercial smart phone. Proceedia Computer Science, 10:1114–1120, 2012

Path Approximation within a Floor: Combination

- Combining with WIFI
 - It takes around 4s to get a new completed WIFI scan
 - Use local adjustment from the classifier results

Figure 4: Adjusting particle P based on output of WIFI fingerprinting classification model

Path Approximation within a Floor: Wall-crossing check (1)

- Wall crossing adjustment:
 - Assign the direction to go parallel with the wall

Figure 5: Avoiding to cross the wall by adjusting the local direction

Path Approximation within a Floor: Wall-crossing check (2)

- Optimizing wall crossing:
 - Use 2 operators: rotation and local speed adjust.
 - Greedy algorithm: apply to avoid first cross wall.
 - Can be solved by dynamic programming but difficult

Figure 5: Results of applying greedy algorithm for adjusting speed and direction

Path Approximation within a Floor: Results

Results on 3 minutes and 7 minutes approximation:

 3 minutes
 7 minutes

 WIFI
 16.4m
 29.8m

 Wall adjust + WIFI
 14.2m
 28.1m

 Optimize + Wall adjust + WIFI
 10.1m
 24.5m

Table 4: 3rd-quarter error of three combining methods

12

Increasing

of overfitting

chances

Path Approximation within a Floor: Results

- Best approximation results (after submitting the paper):
 - Use rotation matrix only with normalization to 0-mean MAGN (from our paper's reviewers).
 - Only use local adjust with WIFI
 - Do forward and reverse approximation then take weighted average position.
- Error 3rd-quarter is around 13.0m

Figure 6: Best approximating results on Floor 1, Route 1, S3 phone, UAH building.

Discussion and Future Works

- The test data is the real challenge.
- The problem is not solved yet:

14

- Floor is not well separated enough on test data: cannot identify entrance/ leaving points.
 Proposed solutions:
 - Moving patterns can be used here (turning around in the stairs/standing in elevators)
 - Depend largely on WIFI at first step
 - Looking for big changes in MAGN
- If the phone is in the pocket? Proposed solutions:
 - Use WIFI only.
 - Use other axis, however when?

THANK YOU FOR LISTENING!

15

and Wish You Have A Good Accuracy