Pedestrian Positioning from Wrist-worn Wearable Devices

Luis Enrique Díez and Alfonso Bahillo

Faculty of Engineering, University of Deusto, Bilbao, Spain

2016 7th Indoor Positioning and Indoor Navigation Conference

Motivation and Objective

Motivation

Why a wrist-worn sensor?

- Foot-mounted sensors are not very convenient for the users
- Non-constrained way of carrying Smartphones makes the estimation process challenging
- Current availability of Smartwatches and Smartbands
- We all are used to wear devices around our wrists
- Wrist-worn as a sub-case of Smartphone: constrained motion

Motivation and Objective

Motivation

Why a wrist-worn sensor?

- Foot-mounted sensors are not very convenient for the users
- Non-constrained way of carrying Smartphones makes the estimation process challenging
- Current availability of Smartwatches and Smartbands
- We all are used to wear devices around our wrists
- Wrist-worn as a sub-case of Smartphone: constrained motion

Objective

To take advantage of that wrist's constraint of motion to improve the Smartphone's accuracy while using a more convenient sensor location

System block diagram

Hardware description

• Sensor: MTi-300 AHRS IMU from Xsens

- 3 axis Accelerometer (100 Hz)
- 3 axis Gyroscope (100 Hz)
- 3 axis Magnetometer (100 Hz)
- Barometer (50 Hz)

- Online data processing: Matlab running in a laptop
- Installation: Laptop in a backpack plus a wireless mouse to start/stop the system and record the keypoints.

Conclusions and Future work

• Our first complete 2.5D wrist-worn PDR system implementation

- Improvements are needed in every block of the system.
- It is a starting point to go on working on it.

Conclusions and Future work

• Our first complete 2.5D wrist-worn PDR system implementation

- Improvements are needed in every block of the system.
- It is a starting point to go on working on it.
- Near-future wrist-worn specific tasks:
 - To reduce false positive steps when there is no real displacement.
 - Better estimation of heading misalingment between device and user.
 - To keep on searching for an advantage from the wrist constrained movements.

THANK YOU

